

Efficient Mobile Text-to-Image Diffusion Models

Huan Wang Northeastern University, Boston, USA Talk @ACLab, Feb. 26, 2024 (Mon)

Huan Wang, final-year Ph.D. candidate at SMILE Lab, Northeastern University (Boston, USA), advised by Prof. Yun Raymond Fu.

- BE'16, MS'19 @ZJU (Hangzhou, China)
- Interned Google / Snap / MERL / Alibaba.
- Work on efficient deep learning (pruning, distillation) in CV & DL: GenAI, 3D modelling.

Motivation: Deep Learning Model Size is Inflating (very) Quickly

- Parameters: Millions ⇒ Billions (Hundreds of Billions)
- Past (before 2020): Hard to deploy on resource-constrained devices (mobile, IoT, wearable devices) -- Inference
- Now (after 2020): The rise of Generative AI (e.g., Stable Diffusion, ChatGPT) causes more training cost -- Inference
 + Training
 - GPT-3, 175B params, training once: tens of millions of dollars.
 - Environmental impact.

LANGUAGE MODEL SIZES TO MAR/2023

SOTA LLMs size as of 2023/03. [src]

Environmental Impact

Stable Diffusion v1 Estimated Emissions Based on that information, we estimate the following CO2 emissions using the Machine Learning Impact calculator presented in Lacoste et al. (2019). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.

- Hardware Type: A100 PCIe 40GB
- Hours used: 200000
- Cloud Provider: AWS
- Compute Region: US-east

• Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid): 15000 kg CO2 eq.

Training Stable Diffusion model emits **15,000 kg of CO**₂. src: <u>modelcard.md - Stability-Al/stablediffusion · GitHub</u>

Now, more than ever, the world needs *efficient* deep learning.

What is Efficient Deep Learning (EDL)?

Take away **model redundancy / complexity** while maintaining the **performance** as much as possible -- tradeoff!

EDL = better understanding of neural networks.

The 5 Method Categories in EDL

Pruning + distillation: **a complete and generic pipeline** for designing efficient models.

Outline of the Talk

- Background of two EDL techniques: pruning & distillation.
- **SnapFusion** from Snap [NeurIPS'23]
- **MobileDiffusion** from Google [Arxiv]
- Summary

Background : Network Pruning

Illustration of pruning [Han et al., 2015, NeurIPS].

Pruning is probably **the earliest** mode compression method among the five.

- 1986: BP was popularized for training neural networks [Rumelhart et al., 1986, Nature].
- 1987: 1st NeurIPS conference.
- 1988: pruning papers appeared in the 2nd NeurIPS!

(*vs.* **pruning at initialization** – not favored for foundation models.)

Background of Knowledge Distillation (KD)

- Or called "teacher-student learning"
- Idea was invented in 2006 [1].
- Polished later by Hinton et al. in 2014 [2]

The general spirit of KD: **function matching** Given the same input, we want the student to predict the same output as the teacher.

Bucilu^{*}a, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In SIGKDD'06.
 Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In NeurIPS Workshop'14.

Diffusion Model

SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two Seconds

Yanyu Li † Snap Inc., Northeastern University Snap Yun Fu Northeastern Unviersity

Huan Wang † Snap Inc., Northeastern University Yanzhi Wang

Northeastern Unviersity

† Equal contribution.

Qing Jin † . Snap Inc. Sr Sergey Tulyakov Snap Inc.

Ju Hu Pavlo C Snap Inc. Sna Jian Ren † Snap Inc.

Pavlo Chemerys Snap Inc.

NeurIPS 2023

The Rise of Diffusion Models

Early pioneering works

- 2015-ICML-Deep Unsupervised Learning using Nonequilibrium Thermodynamics (Stanford & UCB) – CIFAR10
- 2020-NIPS-Denoising diffusion probabilistic models (UCB) DDPM, 1st demonstration of DM generating high-quality images
- 2021-ICLR-Denoising Diffusion Implicit Models (Stanford) DDIM
- 2021.01-DALL-E 1 (OpenAI)
- 2021.05-Diffusion Models Beat GANS on Image Synthesis (OpenAI)
- 2022.04-DALL-E 2 (OpenAI)
- 2022.05-Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding (Google Imagen)
- 2022.08-Stable Diffusion first release (CVPR'22, Runway + Stability AI)
- 2022.11-eDiff-I: Text-to-Image Diffusion Models with Ensemble of Expert Denoisers (NVIDIA)

Papers exploding **(b** now!

Prerequisites: Diffusion Model in the Generative Family

Figure 2: The directed graphical model considered in this work.

Src: DDPM [Ho et al., 2020, NeurIPS]

- Src: What are Diffusion Models? by Lilian Weng @OpenAl
- DM is featured by the **gradual (iterative)** diffusion and denoising process.
- DM: Feature or latent (z) has the same shape as the input (x).

Motivation: SD is Great, but Huge and Slow

Overview of LDM / SD [Rombach et al., 2022, CVPR]

3 parts:

- Text encoder (from CLIP, frozen) -- input prompt
- UNet (key!) -- iterative denoising
- VAE encoder/decoder (frozen) -- generate image
- Inference: z0=noise, c=TextEnc(prompt) ⇒ z'=UNet(t, z, c) (iterative) ⇒ img=VAEDec(z).

- **Huge model size** (fp16, in CoreML), 1B params:
 - Text encoder: 246.3 MB
 - UNet: 1.7 GB
 - Image Decoder: 99.2 MB
- **Prohibitively slow** (in CoreML):
 - Text encoder: 4.2 ms
 - UNet: unable to profile as one, chunked into 2 parts: ~1.7 ms
 - VAE Decoder: 370.66 ms

Naively run SD on iOS: 1~2mins!

Early attempts for efficient on-device SD (Qualcomm & Google)

Early attempts for efficient on-device SD (Qualcomm & Google)

More of engineering optimizations – not change the UNet arch., not optimize loss, no new training pipeline \Rightarrow SnapFusion will optimize all these aspects.

Profiling – Where is the Speed Bottleneck?

Stable Diffusion v1.5	Text Encoder	UNet	VAE Decoder
Input Resolution	77 tokens	64 × 64	64 × 64
<pre>#Parameters (M)</pre>	123	860	50
Latency (ms)	4	~1,700*	369
Inference Steps	2	50	1
Total Latency (ms)	8	85,000	369
Our Model	Text Encoder	Our UNet	Our Image Decoder
Input Resolution	77 tokens	64×64	64 × 64
#Parameters (M)	77 tokens 123	64 × 64 848	64 imes 64 13
#Parameters (M) Latency (ms)	77 tokens 123 4	64 × 64 848 230	64 × 64 13 116
HPut Resolution #Parameters (M) Latency (ms) Inference Steps	77 tokens 123 4 2	64 × 64 848 230 8	64 × 64 13 116 1

Wanna accelerate SD? Two paths!

- Reduce single inference cost Architecture efficiency
- Reduce #inference steps Samping efficiency

Profiling – Where is the Speed Bottleneck? (more fine-grained examination)

Attn: small #params, huge #latency! complexity of Attn: O(feature map size^2)

Methodology (1) – Efficient UNet

Algorithm 1 Optimizing UNet Architecture

Methodology (1) – Efficient UNet (Final Arch.)

	a with providential last first data at	TO R SOUTHER OF PORTON DUCK FROM	The second		
Store	Basalution	Tuna	Config	UNet N	Aodel
Stage	Resolution	Type	Comig	Origin	Ours
		Cross	Dimension	32	0
		Attention	# Blocks	2	0
Down-1	$\frac{H}{2} \times \frac{W}{2}$	DeeNet	Dimension	32	0
	° °	Resinet	# Blocks	2	2
		Cross	Dimension	64	0
		Attention	# Blocks	2	2
Down-2	$\frac{H}{16} \times \frac{W}{16}$	BasNat	Dimension	64	0
	10 10	Residet	# Blocks	2	2
		Cross	Dimension	128	30
		Attention	# Blocks	2	2
Down-3	$\frac{H}{22} \times \frac{W}{22}$	DecNet	Dimension	128	30
	52 52	Residet	# Blocks	2	1
		Cross	Dimension	128	30
	$\frac{H}{64} \times \frac{W}{64}$	Attention	# Blocks	1	1
Mid		DecNet	Dimension	128	30
		Kesinet	# Blocks	7	4
		Cross	Dimension	128	30
		Attention	# Blocks	3	3
Up-1	$\frac{H}{32} \times \frac{W}{32}$	PorNet	Dimension	128	30
	02 02	Kesinet	# Blocks	3	2
		Cross	Dimension	64	0
		Attention	# Blocks	3	6
Up-2	$\frac{H}{16} \times \frac{W}{16}$	PerNet	Dimension	64	0
	10 10	Keshet	# Blocks	3	3
		Cross	Dimension	32	0
		Attention	# Blocks	3	0
Up-3	$\frac{H}{8} \times \frac{W}{8}$	West Dimension		32	0
			# Blocks	3	3

Table 3: Detailed architecture of our

- Remove the Cross-Attention module at high resolution (the 1st downsample and last upsample).
- Add more modules for the upsample stage (Up-2).

7.4x speedup! vs. SD-v1.5

Methodology (2) – CFG–Aware Step Distillation (a new loss)

What is CFG? ("classifier-free guidance")

• A trick used to improve image quality (for enhancing text semantics).

w=0 w=1 w=7.5 (default)

How CFG works? A simple illustration.

Methodology (2) – CFG-Aware Step Distillation (a new loss)

CFG ("classifier-free guidance")

• A trick used to improve image quality (for enhancing text semantics).

How CFG works? A simple illustration.

- **Problem / Motivation**: CFG is used in inference, *not in distilled training* ⇒ Student is CFG-unaware.
- Solution: We propose to apply CFG to the student during step distillation ⇒ Student is CFG-aware.

Other Optimizations?

The median contributions are true.				
The major contributions are two:	Stable Diffusion v1.5	Text Encoder	UNet	VAE Decoder
Efficient UNet	Input Resolution	77 tokens	64 × 64	64 × 64
 CEG_aware Distillation as presented above 	<pre>#Parameters (M)</pre>	123	860	50
	Latency (ms)	4	${\sim}1,700^{*}$	369
	Inference Steps	2	50	1
	Total Latency (ms)	8	85,000	369
-				
Please refer to the paper for more.	Our Model	Text Encoder	Our UNet	Our Image Decoder
Please refer to the paper for more:	Our Model Input Resolution	Text Encoder 77 tokens	Our UNet 64 × 64	Our Image Decoder 64 × 64
 Please refer to the paper for more: Efficient VAE decoder via structured pruning (L1-n) 	Our Model Input Resolution #Parameters (M)	Text Encoder 77 tokens 123	Our UNet 64 × 64 848	$\begin{array}{c} \textbf{Our Image Decoder} \\ 64 \times 64 \\ \hline 13 \end{array}$
 Please refer to the paper for more: Efficient VAE decoder via structured pruning (L1-no pruning) 	Our Model Input Resolution #Parameters (M) Latency (ms)	Text Encoder 77 tokens 123 4	Our UNet 64 × 64 848 230	$\begin{array}{c c} \hline \textbf{Our Image Decoder} \\ \hline 64 \times 64 \\ \hline 13 \\ \hline 116 \\ \hline \end{array}$
 Please refer to the paper for more: Efficient VAE decoder via structured pruning (L1-n) pruning). 	Our Model Input Resolution #Parameters (M) Latency (ms) Inference Steps	Text Encoder 77 tokens 123 4 2	Our UNet 64 × 64 848 230 8	$\begin{array}{c} \textbf{Our Image Decoder} \\ 64 \times 64 \\ \textbf{13} \\ \textbf{116} \\ 1 \end{array}$
 Please refer to the paper for more: Efficient VAE decoder via structured pruning (L1-no pruning). Training pipeline. E.g., which teacher is used for 	Our Model Input Resolution #Parameters (M) Latency (ms) Inference Steps Total Latency (ms)	Text Encoder 77 tokens 123 4 2 8	Our UNet 64 × 64 848 230 8 1,840	$\begin{array}{c} \textbf{Our Image Decoder} \\ 64 \times 64 \\ 13 \\ 116 \\ 1 \\ 116 \end{array}$

Experimental Results

Ours vs. original SD-v1.5: Better quality, and 46x faster!

SnapFusion is the 1st mobile SD model that can run text-to-image generation <2s!

Method	Steps	FID	CLIP
DPM (Lu et al., 2022a)	8	31.7	0.32
DPM++ (Lu et al., 2022b)	8	25.6	0.32
Meng et al. (Meng et al., 2023)	8	26.9	0.30
Ours	8	24.2	0.30

Zero-shot evaluation on MS-COCO 2017 5K subset.

Comparison to w-conditioning [Meng et al., CVPR, 2023] 1/12 Award Candidates

Examples of Generated Images

(See more results in the Appendix of the paper on arxiv)

SnapFusion is becoming a part in Snapchat, used by hundreds of millions of users.

video demo, iPhone14 Pro.

More Recent Works - MobileDiffusion from Google

MobileDiffusion: Subsecond Text-to-Image Generation on Mobile Devices

Yang Zhao, Yanwu Xu, Zhisheng Xiao, Tingbo Hou Google

{yzhaoeric, yanwuxu, zsxiao, tingbo}@google.com

(a) MobileDiffusion, distilled 8 steps

(b) MobileDiffusion, finetuned 1 step

512x512, 0.2s on iPhone15 Pro! Amazing!

[arXiv:2311.16567]

Like SnapFusion, they optimize in two axes: Architecture & Sampling

Attention Modules

- 1. More transformers in the middle of U-Net & less channels. $\Rightarrow 26\%$ efficiency improvement, no quality drop!
- 2. Decouple SA from CA \Rightarrow 15% efficient improvement
- 3. Share key-value projections \Rightarrow 5% params. reduction.
- 4. Replace gelu with swish gelu is unstable for low-bits.
- 5. Finetune softmax into relu in Attention. \Rightarrow More efficient.
- 6. Trim feed-forward layers \Rightarrow 10% params reduction.

Conv Modules

- 1. Separable convolution $\Rightarrow \sim 10\%$ params. reduction
- Prune redundant residual blocks ⇒ 19% efficiency improvement, 15% params reduction.

Sampling: Build upon prior works: cfg-aware distillation (8-step) and UFOGen [1] (1-step)

- "Bag of tricks"
- More fine-grained optimization than SnapFusion.

Efficiency Comparison of MD

Models	#Channels	#ConvBlocks	#(SA+CA)	#Params(M)	#GFLOPs	Latency(ms)	Model Size (GB)
SD-XL [36]	(320, 640, 1280)	17	31+31	2,300	710	29.5	5.66
SD-1.4/1.5	(320, 640, 1280, 1280)	22	16+16	862	392	21.7	2.07
SnapFusion [23]	(320, 640, 1280, 1280)	18	14+14	848	285	15.0	1.97
MobileDiffusion	(320, 640, 1024)	11	15+18	386	182	9.9	1.04
MobileDiffusion-Lite	(320, 640, 896)	11	12+15	278	153	8.8	0.82

Table 1. Comparison with other recognized latent diffusion models. Latency and GFLOPs, computed with jit per forward step, are measured for an input latent size of 64×64 on TPU v3. Model size (fp16) includes all, *i.e.*, UNet, text encoder and VAE decoder.

Models	Text Encoder	Decoder	UNet	Steps	Overall
SnapFusion [23] ³	4	116	230	8	1960
UFOGen	4	285	1580	1	1869
MD	4	92	142	8 1	1232 238
MD-Lite	4	92	123	1	219

Compared to SD-v1.5:

- ~2x faster
- ~2x smaller

~1.6x faster than SnapFusion (8 steps)

Table 5. On-device latency (ms) measurements.

Quantitatively, 8-step MD ≈ SD-v1.5, 1-step MD < SD-v1.5

Models	Sample	#Steps	FID-30K↓	#Params(B)	#Data(B)
GigaGAN [18] LAFITE [62]	GAN GAN	1 1	9.09 26.94	0.9 0.23	0.98 0.003
Parti [59] DALL·E-2 [38] GLIDE [34] Imagen [42] SD [39] SnapFusion [23] PIXART- α [4] BK-SDM [21]	AR DDPM DDPM DDPM DDIM Distilled DPM DDIM	292 250 256 50 8 20 50	$7.23 \\10.39 \\12.24 \\7.27 \\8.59 \\13.5 \\10.65 \\16.54$	$\begin{array}{c} 20.0 \\ 5.20 \\ 5.00 \\ 3.60 \\ 0.86 \\ 0.85 \\ 0.6 \\ 0.50 \end{array}$	5.00 0.25 0.25 0.45 0.60
SD-replicated ¹	DDIM	50	8.43	0.86	0.15
MD	DDIM Distilled UFOGen	50 8 1	8.65 9.01 11.67	0.40	0.15
MD-Lite	DDIM Distilled UFOGen	50 8 1	9.45 9.87 12.89	0.26	0.15

Table 4. Quantitative evaluations on zero-shot MS-COCO.

Some samples of MD

SD-1.5(865M)

MD-Lite (278M) DDIM 50 steps

MD (386M) DDIM 50 steps

A sunflower wearing sunglasses

MD (386M) Distilled 8 steps

MD (386M) UFOGen 1 step

A robot painted as graffiti on a brick wall. a sidewalk is in front of the wall, and grass is growing out of cracks in the concrete.

Summary: Towards Efficient Mobile DMs

- Two major efficiency paths: Architecture & Sampling.
- Architecture: Hand-design or search or pruning hardware/system oriented
 - a. SnapFusion: Coarse-grained
 - b. MobileDiffusion: Fine-grained
- Sampling: Few-step distillation or one-step fine-tuning. algorithm oriented
 - a. SnapFusion: cfg-aware distillation (8-step)
 - b. MobileDiffusion: cfg-aware distillation (8-step), UFOGen (1-step)

Take-aways:

- 1. Do profiling!
- 2. Hardware-algorithm co-design
- 3. No panacea "bag of tricks"

Thanks! Questions?