
Efficient Mobile Text-to-Image Diffusion Models

Huan Wang
Northeastern University, Boston, USA
Talk @ACLab, Feb. 26, 2024 (Mon)

1

Huan Wang, final-year Ph.D. candidate at SMILE Lab, Northeastern
University (Boston, USA), advised by Prof. Yun Raymond Fu.

● BE’16, MS’19 @ZJU (Hangzhou, China)
● Interned Google / Snap / MERL / Alibaba.
● Work on efficient deep learning (pruning, distillation) in CV &

DL: GenAI, 3D modelling.

https://huanwang.tech/

Motivation: Deep Learning Model Size is Inflating (very) Quickly

● Parameters: Millions ⇒ Billions (Hundreds of Billions)

Now, more than ever, the world
needs efficient deep learning. 2

SOTA LLMs size as of 2023/03. [src]

● Past (before 2020): Hard to deploy on resource-constrained devices (mobile, IoT, wearable devices) -- Inference
● Now (after 2020): The rise of Generative AI (e.g., Stable Diffusion, ChatGPT) causes more training cost -- Inference

+ Training
○ GPT-3, 175B params, training once: tens of millions of dollars.
○ Environmental impact.

Training Stable Diffusion model emits 15,000 kg of CO2.
src: modelcard.md - Stability-AI/stablediffusion · GitHub

https://lifearchitect.ai/models/#model-bubbles
https://github.com/Stability-AI/stablediffusion/blob/main/modelcard.md

What is Efficient Deep Learning (EDL)?

Take away model redundancy / complexity while maintaining the performance as
much as possible -- tradeoff!

Model complexity
(cost)

Performance
(gain)

3

Essentially, EDL is about neural
networks, not specific AI tasks.

EDL = better understanding of neural networks.

capacity, optimization ⇒ generalization

No universal EDL solution

(1) Pruning

The 5 Method Categories in EDL

Network Architecture

Layer

Weight

Bit

(3) Low-rank Decomposition

(2) Quantization

Hierarchical Redundancy in a DNN

granularity

large

small

• (5) Hand-crafting (e.g., MobileNetV1-V3)
• (5) Neural Architecture Searching (NAS)
• (4) Knowledge Distillation

my research focus

4

Pruning Distillation
Compression Compensation

Pruning + distillation: a complete and generic
pipeline for designing efficient models.

+

5

Outline of the Talk

● Background of two EDL techniques: pruning & distillation.

● SnapFusion from Snap [NeurIPS’23]

● MobileDiffusion from Google [Arxiv]

● Summary

Pruning is probably the earliest mode compression
method among the five.

● 1986: BP was popularized for training neural
networks [Rumelhart et al., 1986, Nature].

● 1987: 1st NeurIPS conference.
● 1988: pruning papers appeared in the 2nd NeurIPS!

Illustration of pruning [Han et al., 2015, NeurIPS].

Background : Network Pruning

6[Liu et al., ICLR, 2019]

(practiced for 30+ years)
The Typical 3-Stage Pruning Pipeline

(vs. pruning at initialization - not
favored for foundation models.)

Background of Knowledge Distillation (KD)
● Or called “teacher-student learning”
● Idea was invented in 2006 [1].
● Polished later by Hinton et al. in 2014 [2]

The general spirit of KD: function matching
Given the same input, we want the student to predict the
same output as the teacher.

[1] Buciluˇa, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In SIGKDD’06.
[2] Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In NeurIPS Workshop’14.

feature
distillation

output
distillation

7

Illustration of KD

“A pikachu fine dining with a view
to the Eiffel Tower”

8

Prompt

Diffusion Model
Image

9

NeurIPS 2023

10

The Rise of Diffusion Models

Early pioneering works

[src: Sehwag's blog]

Papers exploding🔥 now!

https://vsehwag.github.io/blog/2023/2/all_papers_on_diffusion.html

11

Prerequisites: Diffusion Model in the Generative Family

● Src: What are Diffusion Models? by Lilian
Weng @OpenAI

● DM is featured by the gradual (iterative)
diffusion and denoising process.

● DM: Feature or latent (z) has the same shape
as the input (x).

Src: DDPM [Ho et al., 2020, NeurIPS]

● Huge model size (fp16, in CoreML), 1B
params:

○ Text encoder: 246.3 MB
○ UNet: 1.7 GB
○ Image Decoder: 99.2 MB

● Prohibitively slow (in CoreML):

○ Text encoder: 4.2 ms
○ UNet: unable to profile as one,

chunked into 2 parts: ∼1.7 ms
○ VAE Decoder: 370.66 ms

Naively run SD on iOS: 1~2mins!

Motivation: SD is Great, but Huge and Slow

Overview of LDM / SD [Rombach et al., 2022, CVPR]

12

3 parts:
● Text encoder (from CLIP, frozen) -- input prompt
● UNet (key!) -- iterative denoising
● VAE encoder/decoder (frozen) -- generate image
● Inference: z0=noise, c=TextEnc(prompt) ⇒ z’=UNet(t, z, c) (iterative) ⇒ img=VAEDec(z).

VAE Encoder / Decoder
UNet

Text Encoder

13

Early attempts for efficient on-device SD
(Qualcomm & Google)

14

Early attempts for efficient on-device SD
(Qualcomm & Google)

More of engineering optimizations – not change the UNet arch., not optimize loss,
no new training pipeline ⇒ SnapFusion will optimize all these aspects.

Profiling - Where is the Speed Bottleneck?

Wanna accelerate SD? Two paths!
● Reduce single inference cost - Architecture efficiency
● Reduce #inference steps - Samping efficiency

15

16

Attn: small #params, huge #latency!
complexity of Attn: O(feature map size^2)

Cost inside UNet

Profiling - Where is the Speed Bottleneck?
(more fine-grained examination)

A typo in paper: Should be Attention
(including Self-Attn and Cross-Attn)

Methodology (1) - Efficient UNet

17

We propose an Automatic Architecture Evolving
Algorithm (General idea: remove the unimportant
modules and add the important ones.)

Efficient UNet

Unimportance Score =

smaller is better

larger is better

18

● Remove the Cross-Attention
module at high resolution (the 1st
downsample and last upsample).

● Add more modules for the upsample
stage (Up-2).

Methodology (1) - Efficient UNet (Final Arch.)

7.4x speedup! vs. SD-v1.5

19

Methodology (2) - CFG-Aware Step Distillation (a new loss)

What is CFG? (“classifier-free guidance”)
● A trick used to improve image quality (for enhancing text semantics).

Direction of text semanticsconditioned
un

co
nd

iti
on

ed

How CFG works? A simple illustration.

w=0
w=1
w=7.5 (default)

CFG-adjusted

● Problem / Motivation: CFG is used in inference, not in distilled
training ⇒ Student is CFG-unaware.

Methodology (2) - CFG-Aware Step Distillation (a new loss)

CFG (“classifier-free guidance”)
● A trick used to improve image quality (for enhancing text semantics).

20

Direction of text semanticsconditioned
un

co
nd

iti
on

ed

How CFG works? A simple illustration.

w=0
w=1
w=7.5 (default)

CFG-adjusted

● Solution: We propose to apply CFG to the student
during step distillation ⇒ Student is CFG-aware.

21

The major contributions are two:
● Efficient UNet
● CFG-aware Distillation, as presented above.

Please refer to the paper for more:
● Efficient VAE decoder via structured pruning (L1-norm

pruning).
● Training pipeline. E.g., which teacher is used for

distilling the 8-step student?

Other Optimizations?

Zero-shot evaluation on MS-COCO 2017 5K subset.

Experimental Results

Comparison to w-conditioning [Meng et al., CVPR,
2023] 1/12 Award Candidates

Ours vs. original SD-v1.5: Better quality, and 46x faster!

SnapFusion is the 1st mobile SD model that can run
text-to-image generation <2s!

(See more results in the Appendix of the paper on arxiv)

Examples of Generated Images

23

https://arxiv.org/pdf/2306.00980.pdf

video demo, iPhone14 Pro.
24

SnapFusion is becoming a part in Snapchat, used by hundreds of millions of users.

https://youtu.be/zK5PQ3Oj_L8
http://www.youtube.com/watch?v=zK5PQ3Oj_L8

25

More Recent Works - MobileDiffusion from Google

512x512, 0.2s on iPhone15 Pro! Amazing!
[arXiv:2311.16567]

26

Like SnapFusion, they optimize in two axes: Architecture & Sampling

Conv Modules
1. Separable convolution ⇒ ~10% params. reduction

2. Prune redundant residual blocks ⇒ 19% efficiency
improvement, 15% params reduction.

Sampling: Build upon prior works: cfg-aware distillation (8-step) and UFOGen [1] (1-step)

[1] Xu, Yanwu, et al. "Ufogen: You forward once large scale text-to-image generation via diffusion gans." arXiv preprint arXiv:2311.09257 (2023).

Attention Modules
1. More transformers in the middle of U-Net & less channels.

⇒ 26% efficiency improvement, no quality drop!
2. Decouple SA from CA ⇒ 15% efficient improvement
3. Share key-value projections ⇒ 5% params. reduction.
4. Replace gelu with swish - gelu is unstable for low-bits.
5. Finetune softmax into relu in Attention. ⇒ More efficient.
6. Trim feed-forward layers ⇒ 10% params reduction.

● “Bag of tricks”
● More fine-grained

optimization than
SnapFusion.

27

Efficiency Comparison of MD

Compared to SD-v1.5:
● ~2x faster
● ~2x smaller

~1.6x faster than SnapFusion (8 steps)

28

Quantitatively, 8-step MD ≈ SD-v1.5, 1-step MD < SD-v1.5

Some samples of MD

29

30

Summary: Towards Efficient Mobile DMs

● Two major efficiency paths: Architecture & Sampling.

● Architecture: Hand-design or search or pruning - hardware/system oriented
a. SnapFusion: Coarse-grained
b. MobileDiffusion: Fine-grained

● Sampling: Few-step distillation or one-step fine-tuning. - algorithm oriented
a. SnapFusion: cfg-aware distillation (8-step)
b. MobileDiffusion: cfg-aware distillation (8-step), UFOGen (1-step)

Take-aways:
1. Do profiling!

2. Hardware-algorithm co-design
3. No panacea - “bag of tricks”

31

Thanks!
Questions?

