Smile

Synergetic Media Learning Lab

Efficient Mobile Text-to-Image Diffusion Models

Huan Wang
Northeastern University, Boston, USA
Talk @ASU, Feb. 09, 2024 (Fri)

Huan Wang, final-year Ph.D. candidate at SMILE Lab, Northeastern
University (Boston, USA), advised by Prof. Yun Raymond Fu.
e BE'16, MS'19 @ZJU, advised by Prof. Haoji Hu.
e Interned Google / Snap / MERL / Alibaba.
e Work on efficient deep learning (pruning, distillation) in CV &
DL: GenAl, 3D modelling.

https://huanwang.tech/

Motivation: Deep Learning Model Size is Inflating (very) Quickly

e Parameters: Millions = Billions (Hundreds of Billions)

e Past (before 2020): Hard to deploy on resource-constrained devices (mobile, 10T, wearable devices) -- Inference
e Now (after 2020): The rise of Generative Al (e.g., Stable Diffusion, ChatGPT) causes more training cost -- Inference

+ Training
o GPT-3, 175B params, training once: tens of millions of dollars.
o Environmental impact.

Environmental Impact

LANGUAGE MODEL SIZES TO MAR/2023

Stable Diffusion v1 Estimated Emissions Based on that information, we estimate the following CO2 emissions using the le]
Imp " presented in La et al. (2019). The hardware, runtime, cloud provider, and compute region were utilized to estimate

Luminous
GLM-130B
2008 ehatomes.] the carbon impact.

* Hardware Type: A100 PCle 40GB
PaLM-Coder 8
Minerva Hours used: 200000
m::—;:t:: \ & Undisflossd 5
il Cloud Provider: AWS
e Compute Region: US-east
Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid): 15000 kg CO2 eq.

Training Stable Diffusion model emits 15,000 kg of CO,,
= src: modelcard.md - Stability-Al/stablediffusion - GitHub

& LifeArchitect.ai/models

Now, more than ever, the world

SOTA LLMs size as of 2023/03. [src)
needs efficient deep learning. 2

https://lifearchitect.ai/models/#model-bubbles
https://github.com/Stability-AI/stablediffusion/blob/main/modelcard.md

What is Efficient Deep Learning (EDL)?

Take away model redundancy / complexity while maintaining the performance as

much as possible -- tradeoff!
//‘M Performance

(gain)

Model complexity
(cost)

No universal EDL solution
Essentially, EDL is about neural capacity, optimization = generalization

networks, not specific Al tasks.
EDL = better understanding of neural networks.

large

granularity

small

The 5 Method Categories in EDL

« (5) Hand-crafting (e.g., MobileNetV1-V3)
* (5) Neural Architecture Searching (NAS)
« [(4) Knowledge Distillation

W) Low-rank Decomposition

(1) Pruning > my research focus
v (2) Quantization
Compression Compensation
Hierarchical Redundancy in a DNN | Pruning | * | Distillation |

Pruning + distillation: a complete and generic
pipeline for designing efficient models.

Outline of the Talk

Background of two EDL techniques: pruning & distillation.
SnapFusion from Snap [NeurlPS'23]
MobileDiffusion from Google [Arxiv]

Summary

Background : Network Pruning

before pruning after pruning

Pruning is probably the earliest mode compression
method among the five.
e 1986: BP was popularized for training neural
networks [Rumelhart et al., 1986, Nature].
e 1987: 1st NeurlPS conference.
e 1988: pruning papers appeared in the 2nd NeurlPS!

pruning
synapses

pruning
neurons

-—>

lllustration of pruning [Han et al., 2015, NeurlPS].

The Typical 3-Stage Pruning Pipeline
(practiced for 30+ years)

~
- , , _ ‘ (vs. pruning at initialization - not
Uilsste | Pruning Fine-tuning) favored for foundation models.)
.

[Liu et al., ICLR, 2019]

More Background: The 4 Key Questions in Network Pruning

1. What to prune?
(structured vs. unstructured)

&

2. How many to prune?
(layer-wise pruning ratio)

J

3. Which ones to prune?
(pruning criterion)

&

Irregular Regular

e = [|

e el | [

o = [| [

Vector-level Kernel-level
Sparsity(1-D) Sparsity(2-D)

Different sparsity structures.
[Mao et al., 2017, CVPRw]

Fine-grained Filter-level
Sparsity(0-D) Sparsity(3-D)

most studied!

4. How to schedule the pruning process?

(e.g., one-shot vs. progressive)

Two groups of pruning methods:

Structured pruning = acceleration
Unstructured pruning = compression

[Wang et al.,, 2019, JSTSP] Huan Wang, et al. Structured Pruning for Efficient Convolutional Neural Networks via Incremental Regularization. JSTSP, 2019

Background of Knowledge Distillation (KD)

e Or called “teacher-student learning”
e Idea was invented in 2006 [1].
e Polished later by Hinton et al. in 2014 [2]

Under-explored KD Problems:
1. The KD in 3D vision / neural rendering is very
much under-explored.

2. KD in GenAl?
3. How KD interacts with DA has not been well

understood so far - KD+DA, theory [\Wang et
al.,, 2022, NeurlPS] - not covered today

[1] Bucilua, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In SIGKDD'06.
[2] Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In NeurlPS Workshop'14.

Teacher .
» (pretrained) » Logits —_

feature
distillation

>~ loss func (KL Div)
output

= » m» Logits ~ distillation

[llustration of KD

The general spirit of KD: function matching
Given the same input, we want the student to predict the
same output as the teacher.

“Distillation is becoming a dominant tool in deep learning”

Alex Kendall (He/Him) - Following
CEO at Wayve

1mo - ®

Wrapping up an amazing week at #CVPR2023! It was great to chat with
the authors of many impressive research papers. Some interesting
trends | observed:

2

(1) neural rendering methods can now handle dynamic scenes (although
w huge compute requirements, but | expect will become real-time within
the year). Many examples of this, such as: https://dynibar.github.io/

(2) model distillation is becoming a dominant tool in deep learning, now
even enabling continual learning as model architectures change
https://Inkd.in/erFA5Fi8 or turning diffusion models into single shot
feed forward models https://Inkd.infe5xaUkM4

(3) many new problems which lack comprehensive datasets are now
able to be solved by tricks to train on heterogeneous datasets which
only partially share modalities or label classes. A neat example was this
paper learning human pose from egocentric videos:
https://Inkd.in/e8tEg-6¢

In CVPR’23, 2/12 Award Candidate
Papers used distillation:
e MobileNeRF - neural rendering
e \W-conditioned distillation -
diffusion models / GenAl

Post on LinkedIn, credit: Alex Kendall, CEO of Wayve

“A pikachu fine dining with a view
to the Eiffel Tower”

Prompt

Diffusion Model

10

SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two Seconds

Yanyu Li t Huan Wang t QinglJint JuHu Pavlo Chemerys
Snap Inc., Northeastern University Snap Inc., Northeastern University Snap Inc. Snap Inc. Snap Inc.
Yun Fu Yanzhi Wang Sergey Tulyakov JianRen t
Northeastern Unviersity Northeastern Unviersity Snap Inc. Snap Inc.

T Equal contribution.

NeurlPS 2023

11

The Rise of Diffusion Models

Early pioneering works

Papers exploding ¢ now!
@ 2015-ICML-Deep Unsupervised Learning using Nonequilibrium

Thermodynamics (Stanford & UCB) — CIFAR10 Increasing interest in diffusion models
@ 2020-NIPS-Denoising diffusion probabilistic models (UCB) — DDPM, 1st o 2007
demonstration of DM generating high-quality images = .
@ 2021-ICLR-Denoising Diffusion Implicit Models (Stanford) — DDIM GC::]
o 2021.01-DALL-E 1 (OpenAl) 25
e 2021.05-Diffusion Models Beat GANS on Image Synthesis (OpenAl) g 20-
o 2022.04-DALL-E 2 (OpenAl) S ———
@ 2022.05-Photorealistic Text-to-Image Diffusion Models with Deep Language ote 2019 ZOZOYeaiOZI 2022 2023
Understanding (Google Imagen)
e 2022.08-Stable Diffusion first release (CVPR'22, Runway + Stability Al) lsre: Sehwadls blog]
e 2022.11-eDiff-I: Text-to-Image Diffusion Models with Ensemble of Expert

Denoisers (NVIDIA)

12

https://vsehwag.github.io/blog/2023/2/all_papers_on_diffusion.html

Prerequisites: Diffusion Model in the Generative Family

o(xt 1|Xt)
@ —@ — O
; 3 Src: DDPM [Ho et al., 2020, NeurlPS]

Q(Xt|xt 1)

Figure 2: The directed graphical model considered in this work.

Discriminator Generator

GANirQ%Ysésarial x' X D(x) G(z) x'
/] e Src: What are Diffusion Models? by Lilian
VAE: maximize ,T‘ Dy 4 Weng @OpenAl

variational lower bound

= % *

— — e DM is featured by the gradual (iterative)

Elow-based models: Flow 7 Inverse o diffusion and denoising process.
Invertible transform of x f(x) [(=)
distributions

— — e DM: Feature or latent (z) has the same shape
as the input (x).

Diffusion models:
Gradually add Gaussian
noise and then reverse

13

Motivation: SD is Great, but Huge and Slow

VAE Encoder / Decoder UNet

f
(\ Latent Space ondltlonln
E—I— :Diffusion Process ——» Eemanth
Ma
P : Denoising U-Net €g 27 Text
Repres
entations
o
Pixel Space
Dq > Texi

denoising step crossattention switch skip connection concat
Overview of LDM / SD [Rombach et al., 2022, CVPR]

3 parts:
e Text encoder (from CLIP, frozen) -- input prompt
e UNet (key!) -- iterative denoising
e VAE encoder/decoder (frozen) -- generate image

z'=UNet(t, z,

Encoder

Huge model size (fp16, in CoreML), 1B
params:

o Textencoder: 246.3 MB

o UNet:1.7 GB

o Image Decoder: 99.2 MB

Prohibitively slow (in CoreML):
o Textencoder: 4.2 ms
o UNet: unable to profile as one,
chunked into 2 parts: ~1.7 ms
o VAE Decoder: 370.66 ms

Naively run SD on iOS: 1~2mins!

c)

14

Early attempts for efficient on-device SD
(Qualcomm & Google)

OnQ Blog
SD-v1.4, 15s, via full-stack Al optimization

World's first on-device demonstration of Stable
Diffusion on an Android phone

15

Early attempts for efficient on-device SD
(Qualcomm & Google)

GO gle Research Philosophy Research Areas Publications People Resources Outreach

SD-v1.5, 12s, via mobile GPU optimization

BLOG >

Speed is all you need: On-device acceleration of large
diffusion models via GPU-aware optimizations

THURSDAY, JUNE 15, 2023
Posted by Juhyun Lee and Raman Sarokin, Software Engineers, Core Systems & Experiences

The proliferation of large diffusion models for image generation has led to a significant increase in model size and
inference workloads. On-device ML inference in mobile environments requires meticulous performance optimization
and consideration of trade-offs due to resource constraints. Running inference of large diffusion models (LDMs) on-
device, driven by the need for cost efficiency and user privacy, presents even greater challenges due to the substantial
memory requirements and computational demands of these models.

More of engineering optimizations — not change the UNet arch., not optimize loss,
no new training pipeline = SnapFusion will optimize all these aspects.

16

Profiling - Where is the Speed Bottleneck?

Stable Diffusion v1.5 | Text Encoder UNet VAE Decoder
Input Resolution 77 tokens 64 x 64 64 x 64
#Parameters (M) 123 860 50
Latency (ms) 4 ~1,700* 369
Inference Steps 2 50 1
Total Latency (ms) 8 85,000 369
Our Model | Text Encoder QOur UNet Our Image Decoder
Input Resolution 77 tokens 64 x 64 64 x 64
#Parameters (M) 123 848 13
Latency (ms) 4 230 116
Inference Steps 2 8 1
Total Latency (ms) 8 . 116

Wanna accelerate SD? Two paths!
e Reduce single inference cost - Architecture efficiency
e Reduce #inference steps - Samping efficiency

17

Profiling - Where is the Speed Bottleneck?
(more fine-grained examination)

1000 800 600 400 200 0

Up-1/8
Up-1/16
Up-1/32

Mid-1/64
Attn: small #params, huge #latency!

Down-1/32 complexity of Attn: O(feature map size/2)

Down-1/16

Down-1/8

0 100 200 300 400
B CA params M ResNet params ® CA latency ResNet latency

l Cost inside UNet
A typo: Should be Attention
(including Self-Attn and Cross-Attn)

18

Methodology (1) - Efficient UNet

Algorithm 1 Optimizing UNet Architecture

Require: UNet: €p; validation set: D, ;; latency lookup
table T : { Cross-Attention|[i, j|, ResNet], j| }.
Ensure: ég converges and satisfies latency objective S.
while €g not converged do
Perform robust training.
— Architecture optimization:
if perform architecture evolving at this iteration then
— Evaluate blocks:
for each block(i, j] do
ACLIP < eval(ég, Ab_lock[i’j], Dyal),

T)

ALatency|< eval(ég, A
end for
— Sort actions based on| S<IF b execute ac-
tion, and evolve architecture to get Iatency 7"
if T not satisfied then
{A7} < argmin,
else
{A*} < copy(arg max ,—

blocklt,j]’

ACLIP
AlLatency’

ACLIP)
AlLatency 7’

éo <+ evolve(éq, {A})
end if
end if
end while

We propose an Automatic Architecture Evolving
Algorithm (General idea: remove the unimportant
modules and add the important ones.)

- smaller is better

ACLIP
A Latency

larger is better

Unimportance Score =

U

Efficient UNet

19

Methodology (1) - Efficient UNet (Final Arch.)

Table 3: Detailed architecture of our efficient UNet model.

. UNet Model
Stage | Resolution Type Config Origin [Ours
Cross Dimension 320
Attention | #Blocks [[2 | 0 |
Down-1 H W Dimension 320
0% | ResNet ' =ppcks | 2 | 2
Cross Dimension 640
Attention # Blocks 2 1 2
Down-2 H s W Dimension 640
10718 | ResNet | —rppocks | 2 | 2
Cross Dimension 1280
Attention # Blocks 2] 2
Down-3 LN A Dimension 1280
7% | ResNet ' —ppks 12 T]
Cross Dimension 1280
Attention # Blocks 1 | 1
Mid gz W Dimension 1280
oo ResNet # Blocks [7 T 4]
Cross Dimension 1280
Attention # Blocks 3 1 3
Up-1 2 W Dimension 1280
| ResNet ' piocks | 13 [2]
Cross Dimension 640
Attention | # Blocks [3 | 6]
Up-2 Ex X Dimension 640
ResNet ' Blocks | 3 [3
Cross Dimension 320
Attention # Blocks [3 1 0]
Up-3 2, W Dimension 320
0% | ResNet 'rpiocks |3 | 3

Remove the Cross-Attention
module at high resolution (the Tst
downsample and last upsample).

Add more modules for the upsample
stage (Up-2).

U

7.4x speedup! vs. SD-v1.5

20

Methodology (2) - CFG-Aware Step Distillation (a new loss)

What is CFG? (“classifier-free guidance”)
e A trick used to improve image quality (for enhancing text semantics).

How CFG works? A simple illustration.

o w=0
Y R o w=l
& 5 w=7.5 (default)
s
$ oz

21

Methodology (2) - CFG-Aware Step Distillation (a new loss)

CFG (“classifier-free guidance”)
e A trick used to improve image quality (for enhancing text semantics).

How CFG works? A simple illustration.

w=0
(@b O/;@cf e w=l
XS w=7.5 (default)

AN
34 1 —e— SD-v1.5 (50 steps)

e Problem / Motivation: CFG is used in inference, not in distilled 4 | —— w-conditioned (50 steps)
training = Student is CFG-unaware. ~~=----—--_______ g0 L] o Do ditioned (%8 stebe)
_____________ —e— w-conditioned (16 steps)
—_Q_ 98 17T w-conditioned (8 steps)
= Ours (8 steps) "7 ---
e Solution: We propose to apply CFG to the student 261
during step distillation = Student is CFG-aware. 77 2 /
22 1
20 T T T T
0.22 0.24 0.26 0.28 0.30

CLIP score

Other Optimizations?

The major contributions are two: Stable Diffusion vi5

Text Encoder

VAE Decoder

L4 Efficient UNet Input Resolution
e CFG-aware Distillation, as presented above. #Parameters (M)
Latency (ms)

Inference Steps
Total Latency (ms)

64 x 64
0
1
369

Our Model

Text Encoder

Our Image Decoder

Please refer to the paper for more: mput Resolution
e Efficient VAE decoder via structured pruning (L1-nc #Parameters (M)

. Latency (ms)
pru_nl_ng)' Inference Steps
e Training pipeline. E.g., which teacher is used for Total Latency (ms)

64 x 64
13

116

distilling the 8-step student?

23

Experimental Results

FID

28 AV
5 —e— Stable Diffusion v1.5, 50 steps, 1.4min ’E)A;T\r/llo(dL 20053) Stgps ;1|D7 ((:)L?:2P
. —e— Ours, 8 steps, 1.84 u et al.,, a . .
TR ops, ~0 DPM-++ (Lu et al., 2022b) 8 256 0.32
Meng et al. (Meng et al., 2023) 8 269 0.30
Ours 8 24.2 0.30
Zero-shot evaluation on MS-COCO 2017 5K subset.
\
341 —e— SD-v1.5 (50 steps)
30 = w-conditioned (50 steps)
—e— w-conditioned (32 steps)
30 7 —e— w-conditioned (16 steps)
12 0 '2 4 0 '2 6 0 '28 0 "30 28 - w-conditioned (8 steps)
GLID acoie - Ours (8 steps)
Ours vs. original SD-v1.5: Better quality, and 46x faster! 24
22
SnapFusion is the 1st mobile SD model that can run
—to-i i I 20 . . : ,
text-to-image generation <2s! 0.22 0.24 0.26 0.98 0.30

CLIP score

Comparison to w-conditioning [Meng et al., CVPR,
2023] 1/12 Award Candidates

Examples of Generated Images

(See more results in the Appendix of the paper on arxiv)

25

https://arxiv.org/pdf/2306.00980.pdf

SnapFusion is becoming a part in Snapchat, used by hundreds of millions of users.

video demo, iPhonel4 Pro.

26

https://youtu.be/zK5PQ3Oj_L8
http://www.youtube.com/watch?v=zK5PQ3Oj_L8

More Recent Works - MobileDiffusion from Google

Yang Zhao, Yanwu Xu, Zhisheng Xiao, Tingbo Hou
Google

{yzhaoeric, yanwuxu, zsxiao, tingbo}@google.com

f?

MobileDiffusion: Subsecond Text-to-Image Generation on Mobile Devices

et [-
(a) MobileDiffusion, distilled 8 steps (b) MobileDiffusion, finetuned 1 step

512x512, 0.2s on iPhonel5 Pro! Amazing!
[arXiv:2311.16567]

27

Like SnapFusion, they optimize in two axes: Architecture & Sampling

Attention Modules

1.

ook wn

More transformers in the middle of U-Net & less channels.

= 26% efficiency improvement, no quality drop!
Decouple SA from CA = 15% efficient improvement
Share key-value projections = 5% params. reduction.
Replace gelu with swish - gelu is unstable for low-bits.
Finetune softmax into relu in Attention. = More efficient.
Trim feed-forward layers = 10% params reduction.

Conv Modules

1.
2.

Separable convolution = ~10% params. reduction
Prune redundant residual blocks = 19% efficiency
improvement, 15% params reduction.

e "“Bag of tricks”

[> e More fine-grained
optimization than

SnapFusion.

Sampling: Build upon prior works: cfg-aware distillation (8-step) and UFOGen [1] (1-step)

[11 Xu, Yanwu, et al. "Ufogen: You forward once large scale text-to-image generation via diffusion gans." arXiv preprint arXiv:2311.09257 (2023).

28

Efficiency Comparison of MD

Models | #Channels #ConvBlocks #(SA+CA) #Params(M) #GFLOPs Latency(ms) | Model Size (GB)
SD-XL [36] (320, 640, 1280) 17 31431 2,300 710 295 5.66
SD-1.4/1.5 (320, 640, 1280, 1280) 22 16+16 862 392
SnapFusion [23] (320, 640, 1280, 1280) 18 14+14 848 285 15.0 1.97
MobileDiffusion (320, 640, 1024) 11 15+18 386 182 9.9 1.04
MobileDiffusion-Lite (320, 640, 896) 11 12415 278 153 8.8 0.82

Table 1. Comparison with other recognized latent diffusion models. Latency and GFLOPs, computed with jit per forward step, are
measured for an input latent size of 64 x 64 on TPU v3. Model size (fp16) includes all, i.e., UNet, text encoder and VAE decoder.

Compared to SD-v1.5:

Models | Text Encoder Decoder | UNet Steps | Overall e ~2x faster
SnapFusion [23]° | 4 116 | 230 8 | 1960 e ~2x smaller
UFOGen | 4 285 | 1580 1 | 1869

8 1232
MD ’ 4 92 ‘ 142 1 ‘ 238
MD-Lite | 4 92 | 123 1| 219 ~1.6x faster than SnapFusion (8 steps)

Table 5. On-device latency (ms) measurements.

29

Quantitatively, 8-step MD = SD-v1.5, 1-step MD < SD-v1.5

Models Sample #Steps FID-30K| #Params(B) #Data(B)
GigaGAN [18] GAN 1 9.09 0.9 0.98
LAFITE [62] GAN 1 26.94 0.23 0.003
Parti [59] AR - 7.23 20.0 5.00
DALL-E-2 [38] DDPM 292 10.39 5.20 0.25
GLIDE [34] DDPM 250 12.24 5.00 0.25
Imagen [42] DDPM 256 727 3.60 0.45
SD [39] DDIM 50 8.59 0.86 0.60
SnapFusion [23] Distilled 8 13.5 0.85 -
PIXART-« [4] DPM 20 10.65 0.6 0.025
BK-SDM [21] DDIM 50 16.54 0.50 -
SD-replicated’ DDIM 50 8.43 0.86 0.15
DDIM 50 8.65
MD Distilled 8 9.01 0.40 0.15
UFOGen 1 11.67
. DDIM 50 9.45
MD-Lite Distilled 8 9.87 0.26 0.15
UFOGen 1 12.89

Table 4. Quantitative evaluations on zero-shot MS-COCO.
30

Some samples of MD

SD-1.5(865M) MD-Lite (278M) MD (386M) MD (386M) MD (386M)
DDIM 50 steps DDIM 50 steps Distilled 8 steps UFOGen 1 step

A robot painted as graffiti on a brick wall. a sidewalk is in front of the wall, and grass is growing out of cracks in the concrete. 31

Summary: Towards Efficient Mobile DMs

Two major efficiency paths: Architecture & Sampling.

Architecture: Hand-design or search or pruning - hardware/system oriented
a. SnapFusion: Coarse-grained
b. MobileDiffusion: Fine-grained

Sampling: Few-step distillation or one-step fine-tuning. - algorithm oriented
a. SnapFusion: cfg-aware distillation (8-step)
b. MobileDiffusion: cfg-aware distillation (8-step), UFOGen (1-step)

Take-aways:

1. Do profiling!

2. Hardware-algorithm co-design
3. No panacea - “bag of tricks”

32

Thanks!
Questions?

33

