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Background & Motivation

Rise of Diffusion Models

2015-ICML-Deep Unsupervised Learning using Nonequilibrium
Thermodynamics (Stanford & UCB) – CIFAR10

2020-NIPS-Denoising diffusion probabilistic models (UCB) – DDPM, 1st
demonstration of DM generating high-quality images

2021-ICLR-Denoising Diffusion Implicit Models (Stanford) – DDIM

2021.01-DALL-E 1 (OpenAI)

2021.05-Diffusion Models Beat GANS on Image Synthesis (OpenAI)

2022.04-DALL-E 2 (OpenAI)

2022.05-Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding (Google Imagen)

2022.08-Stable Diffusion first release (CVPR’22, Runway + Stability AI)

2022.11-eDiff-I: Text-to-Image Diffusion Models with Ensemble of Expert
Denoisers (NVIDIA)

Papers are exponentially exploding now...
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https://vsehwag.github.io/blog/2023/2/all_papers_on_diffusion.html


Background & Motivation

Prerequisites: Diffusion Model in the Generative Family

Above: from DDPM (Ho
et al., 2020), Below: from
What are Diffusion Models?
by Lilian Weng @OpenAI

DM is featured by the
gradual (iterative) diffusion
and denoising process.

DM: Feature or latent (z)
has the same shape as the
input (x).
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https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Background & Motivation

Prerequisites: Latent Diffusion Model / Stable Diffusion

LDM: Apply DM in feature space (latent space), for less required resources.

SD: Train LDM on the large-scale LAION-5B dataset (Schuhmann et al.).

Figure: Overview of LDM (Rombach et al., 2022). 3 parts: VAE encoder/decoder
(frozen), UNet (key!), text encoder (from CLIP, frozen). Inference: z0=noise,
c=TextEnc(prompt) ⇒ z’=UNet(t, z, c) (iterative) ⇒ img=VAEDec(z).
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Background & Motivation

Prerequisites: Latent Diffusion Model / Stable Diffusion

Figure: A rough sketch of SD training, and testing with DDIM (Song et al., 2021)

June 21, 2023 6 / 26



Background & Motivation

Motivation: SD is Great, but Huge and Slow

Huge model size (fp16, in CoreML), 1B params:

Text encoder: 246.3 MB
UNet: 1720.7 MB
Image Decoder: 99.2 MB

Prohibitively slow (in CoreML):

Text encoder: 4.2 ms
UNet: unable to profile as one, chunked into 2 parts: ∼1,700ms
Image Decoder: 370.66 ms
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Background & Motivation

Existing Works (Qualcomm & Google)

More of engineering optimizations – not change the UNet arch., not optimize loss,
no new training pipeline.
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https://www.qualcomm.com/news/onq/2023/02/worlds-first-on-device-demonstration-of-stable-diffusion-on-android
https://arxiv.org/abs/2304.11267
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Profiling - Where is the Speed Bottleneck?

Latency Comparison: SD-v1.5 vs. Ours

Table: Latency Comparison between Stable Diffusion v1.5 and our proposed efficient
diffusion models (UNet and Image Decoder) on iPhone 14 Pro. *We notice the latency
varies depending on the phones and use three phones to get the average speed.

Stable Diffusion v1.5 Text Encoder UNet VAE Decoder
Input Resolution 77 tokens 64 × 64 64 × 64

#Parameters (M) 123 860 50
Latency (ms) 4 ∼1,700∗ 369

Inference Steps 2 50 1
Total Latency (ms) 8 85,000 369

Our Model Text Encoder Our UNet Our Image Decoder
Input Resolution 77 tokens 64 × 64 64 × 64

#Parameters (M) 123 848 13
Latency (ms) 4 230 116

Inference Steps 2 8 1
Total Latency (ms) 8 1,840 116

Speedup comes from two major aspects: reduce the latency of per inference
(7.4×) + reduce the number of inferences (6.25×).

A small speedup from VAE decoder: structured pruning (not covered in this
presentation).

June 21, 2023 10 / 26



Profiling - Where is the Speed Bottleneck?

Latency Breakdown of SD-v1.5

Cross-Attention modules of the early stages consume a lot of time, despite the
small #params.
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Figure: Latency (iPhone 14 Pro, ms) and parameter (M) analysis for cross-attention
(CA) and ResNet blocks in the UNet of Stable Diffusion.
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Proposed Method: SnapFusion (Efficient UNet + CFG-aware Distillation)
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Proposed Method: SnapFusion (Efficient UNet + CFG-aware Distillation)

Efficient UNet (1) - Robust Training, Evaluation and
Architecture Evolving

General idea: remove the
unimportant modules and retain the
important ones.

How to measure
unimportant/important? By CLIP
score drop + latency (lookup table).

To accurately capture CLIP score
drop, apply robust training first.

So, the pipeline is: robust training
+ get a latency lookup table ⇒
Drop/keep a module via the
automatic Evaluation and
Architecture Evolving.
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Proposed Method: SnapFusion (Efficient UNet + CFG-aware Distillation)

Efficient UNet (2) - Final Proposed Architecture

Remove the Cross-Attention module
at high resolution (the 1st
downsample and last upsample).

Add more modules for the upsample
stage (Up-2).
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Proposed Method: SnapFusion (Efficient UNet + CFG-aware Distillation)

CFG-aware Distillation (1) - What is CFG?

CFG formulation:

ϵ̃θ(t, zt, c) = wϵ̂θ(t, zt, c)− (w − 1)ϵ̂θ(t, zt,∅)
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Stable Diffusion v1.5, 50 steps, 1.4min

Ours, 8 steps, 1.84s

CFG: classifier-free guidance, introduced
in (Ho & Salimans, 2022), is an important
technique to improve image quality of DMs.

w: CFG scale, a scalar (default: 7.5 in HF
diffusersa), used to tradeoff quality (CLIP
score) and diversity (FID), see left.

ϵ̂θ(t, zt,∅): unconditional output obtained
by using null text ∅ as input.

ahttps://github.com/huggingface/diffusers
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Proposed Method: SnapFusion (Efficient UNet + CFG-aware Distillation)

CFG-aware Distillation (2): Proposed Scheme

Problem: CFG is used in testing while not used in training, i.e., CFG unaware!

Vanilla step distillation:

v̂t = v̂θ(t, zt, c) ⇒ zt′ = αt′(αtzt − σtv̂t) + σt′(σtzt + αtv̂t),

v̂t′ = v̂θ(t
′, zt′ , c) ⇒ zt′′ = αt′′(αt′zt′ − σt′ v̂t′) + σt′′(σt′zt′ + αt′ v̂t′).

CFG-aware distillation (ours): Before distillation, apply CFG first to the latent:

ṽ
(s)
t = wv̂η(t, zt, c)− (w − 1)v̂η(t, zt,∅).

CFG is applied to both the teacher and the student, with the same w; w is
randomly sampled from a uniform distribution ([2, 14] in the paper).
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Proposed Method: SnapFusion (Efficient UNet + CFG-aware Distillation)

Other Contributions

The major contributions are two: Efficient UNet and CFG-aware Distillation, as
presented above.

Please refer to the paper for more:

Efficient VAE decoder via structured pruning (L1-norm pruning).

Training pipeline. E.g., which teacher is used for distilling the 8-step student?

June 21, 2023 17 / 26



Experimental Results

Experimental Results
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Experimental Results

Quantitative Comparison: FID and CLIP score
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Figure: FID vs. CLIP score comparison of
our method vs. the original SD-v1.5. Same
FID, better CLIP score.

Method Steps FID CLIP
DPM (Lu et al., 2022a) 8 31.7 0.32
DPM++ (Lu et al., 2022b) 8 25.6 0.32
Meng et al. (Meng et al., 2023) 8 26.9 0.30
Ours 8 24.2 0.30

Table: Zero-shot evaluation on MS-COCO
2017 5K subset. Our efficient model is
compared against recent arts in the 8-step
configuration. Note the compared works use
the same model as SD-v1.5, which is much
slower than our approach.
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Experimental Results

Visual Results

Figure: Generated samples by our SnapFusion. See more in the Appendix of the paper,
or, our webpage.
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https://snap-research.github.io/SnapFusion/


Experimental Results

Ablation Studies
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Conclusion and Discussions
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Conclusion and Discussions

Conclusion

We present SnapFusion, a super-efficient text-to-image diffusion model on
mobile devices, with a record-low inference time of less than 2s!

SnapFusion achieves so through a comprehensive optimization in network
architecture, objective loss function, and training pipeline.

Network architecture: efficient UNet;
Loss: CFG-aware distillation;
Training pipeline: (not covered in this talk).

SnapFusion maintains the same quality (in terms of FID and CLIP score)
while being much faster than the original SD-v1.5, heralding the encouraging
future of real-time SD on mobile devices soon.

June 21, 2023 23 / 26



Conclusion and Discussions

Limitations & Future Work

Currently, we only focus on text-to-image generation while SD can be
used in extensive applications, such as image super-resolution, LoRA (Hu
et al., 2022), ControlNet (Zhang & Agrawala, 2023), etc.

We focus on improving the inference speed. The #params and model size
on disk and memory are not optimized.
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Conclusion and Discussions

Thanks! & Questions?
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