Recent Advances in Efficient Neural Light Field

Huan Wang

Northeastern University, Boston, USA

Talk @ZJUI, 05/30/2023, Tue

Short Bio: BE'16 @ZJU ISEE, MS'19 @ZJU ISEE, advised by Prof. Haoji Hu. Now 4th-year Ph.D. candidate at Northeastern U., advised by Prof. Yun Raymond Fu. Interned at Alibaba/MERL/Snap Research. Work on efficient deep learning (pruning & distillation) since my master time in various tasks (classification, detection, neural style transfer, super-resolution, NeRF/NeLF, fake news detection, diffusion models, ...).

Talk @ZJUI, 05/30/2023, Tue

Outline: 2 Papers

- R2L: Distilling NeRF to NeLF (ECCV 2022)
- MobileR2L: Run R2L on mobile devices via arch. optimization (CVPR 2023)

R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis (ECCV 2022)

Huan Wang^{1,2,*} Jian Ren^{1,†} Zeng Huang^{1,‡} Kyle Olszewski¹ Menglei Chai¹ Yun Fu² and Sergey Tulyakov¹

¹Snap Inc. ²Northeastern University Project: https://snap-research.github.io/R2L

Talk @ZJUI, 05/30/2023, Tue

Background & Motivation

What is NVS (Image-Based Rendering) and NeRF?

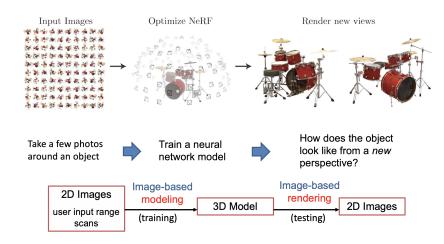


Figure: Illustration of NeRF framework. Src: (Mildenhall et al., 2020); edited.

Motivation: NeRF is great but *slow* in inference

- NeRF (or neural radiance field) (Mildenhall et al., 2020) is an implicit representation of a scene – a buzz word since 2020, Best Paper HM in ECCV'20.
- It opens the new doors of representing complex scenes with a simple MLP network.

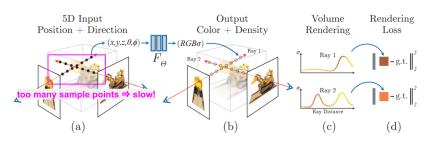


Figure: Illustration of NeRF framework. Src: (Mildenhall et al., 2020); edited.

Aside, Background: 3D Representations

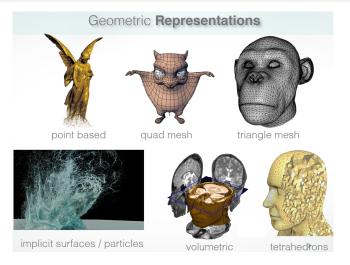


Figure: Courtesy: Prof. Hao Li, USC, CSCI 621: Digital Geometry Processing, http://cs621.hao-li.com. *Different representations requires different processing tools.*

Aside, Background: Implicit Representations

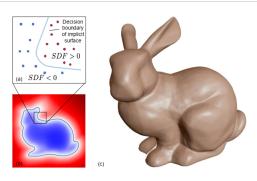


Figure 2: Our DeepSDF representation applied to the Stanford Bunny: (a) depiction of the underlying implicit surface SDF = 0 trained on sampled points inside SDF < 0 and outside SDF > 0 the surface, (b) 2D cross-section of the signed distance field, (c) rendered 3D surface recovered from SDF = 0. Note that (b) and (c) are recovered via DeepSDF.

Figure: DeepSDF (Park et al., 2019) uses SDF (signed distance function) parameterized by a neural network to represent the surface / shape of an object.

Motivation: NeRF is great but *slow* in inference

- However, one primary downside of NeRF is the prohibitively slow inference: Rendering one 400×400 image takes 6.7s on an NVIDIA V100 GPU.
- Our goal: Faster inference of NeRF for efficient NVS (novel view synthesis)

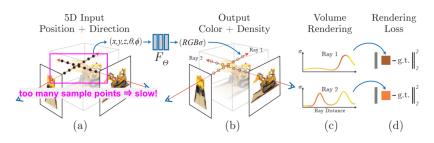


Figure: Illustration of NeRF framework. Src: (Mildenhall et al., 2020); edited.

Motivation: NeRF is great but *slow* in inference

- However, one primary downside of NeRF is the prohibitively slow inference: Rendering one 400×400 image takes 6.7s on an NVIDIA V100 GPU.
- Our goal: Faster inference of NeRF for efficient NVS (novel view synthesis)
 ⇒ Technical goal: Reduce the #sampled points

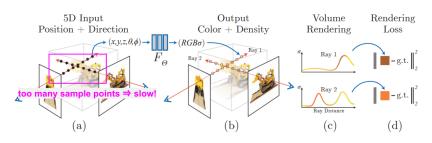


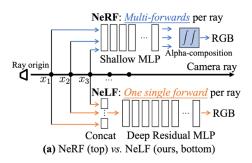
Figure: Illustration of NeRF framework. Src: (Mildenhall et al., 2020); edited.

oposed Method: R2L (NeRF to NeLF)

Proposed Method: R2L (NeRF to NeLF)

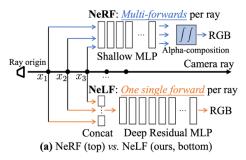
NeLF vs. NeRF

- We seek fast inference through another representation of a scene: NeLF (or neural light field).
- NeLF vs. NeRF Upside: Fast! Rendering one pixel amounts to one network query in NeLF vs. hundreds of network queries in NeRF, as shown below.



NeLF vs. NeRF

- We seek fast inference through another representation of a scene: NeLF (or neural light field).
- NeLF vs. NeRF Upside: Fast! Rendering one pixel amounts to one network query in NeLF vs. hundreds of network queries in NeRF, as shown below.



Downsides: (1) NeLF is inherently harder to learn than NeRF. (2) Given the same batch of images, the data for NeLF is much fewer than NeRF. In short, to learn NeLF successfully, we must overcome two problems: #1 The target function is harder to learn. #2 Even worse, the data sample size shrinks.

R2L: ResMLP

To overcome problem #1, we make two contributions: (1) ResMLP, (2) Better ray representation.

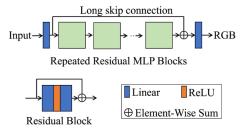


Figure: Architecture of our proposed ResMLP network. Note, this is the first attempt that deep residuals are used in NeRF-like models.

R2L: Ray Representation - PointCat

To overcome problem #1, we make two contributions: (1) ResMLP, (2) Better ray representation.

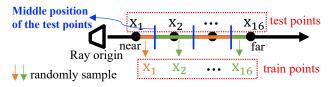


Figure: Illustration of the point sampling in training and testing of our method. The orange and green colors denote the different *segments* of the ray. The blue color marks the *start* and *end* points of each segment. Each sampled train point is colored *based on the corresponding segment color*.

The sampled points are concatenated into a long vector to make the input of our NeLF network – very simple!

During training, the points are randomly sampled; during testing, they are fixed.

Other Ray Representations - Two Planes

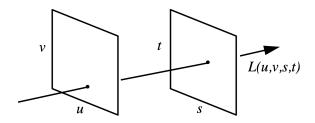


Figure 1: The light slab representation.

Figure: Two-plane parameterization (Levoy & Hanrahan, 1996) represents each ray in a 3D space with its intersection points on two planes.

Other Ray Representations - Plücker

mathematically convenient. In particular, we propose to leverage the 6D Plücker parameterization of the space of light rays $\mathcal L$ for LFNs. The Plücker coordinates (see [49] for an excellent overview) of a ray ℓ through a point $\mathbf p$ in a normalized direction $\mathbf d$ are

$$\mathbf{r} = (\mathbf{d}, \mathbf{m}) \in \mathbb{R}^6 \text{ where } \mathbf{m} = \mathbf{p} \times \mathbf{d}, \text{ for } \mathbf{d} \in \mathbb{S}^2, \mathbf{p} \in \mathbb{R}^3.$$
 (4)

where \times denotes the cross product. While Plücker coordinates are a-priori 6-tuples of real numbers, the coordinates of any ray lie on a 4-dimensional subspace \mathcal{L} . Plücker coordinates uniformly represent

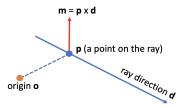


Figure: Plücker representation (Sitzmann et al., 2021) is a tuple of 6 real numbers, made with a normalized direction vector (3D) and a cross-product (3D) of the direction and a point on the line.

R2L: Distilling w/ Pseudo Data & Finetuning w/ Real Data

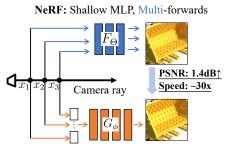
The network gets larger, which is even more data hungry. To overcome the problem #2 (obtain more data), we employ a *pretrained* NeRF to synthesize a large amount of data.

With the pseudo data, the training loss of our NeLF network is simply MSE:

After training our ResMLP model on the pseudo data, it can achieve comparable performance to the NeRF teacher. Then we *finetune* the student on the original real data, which *significantly* boosts the student's performance.

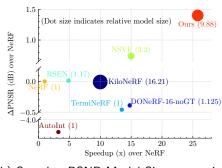
Experimental Results

Comparison Overview (NeRF Synthetic Dataset)



NeLF: Deep Residual MLP, Single forward

(a) NeRF vs. our NeLF method



(b) Speedup-PSNR-Model Size comparis

Figure: (a) Our neural light field (NeLF, bottom) method improves the rendering quality by 1.40 PSNR over neural radiance field (NeRF, top) (Mildenhall et al., 2020) on the NeRF synthetic dataset, while being around 30× faster. (b) Our method achieves a more favorable speedup-PSNR-model size tradeoff than other efficient novel view synthesis methods on the NeRF synthetic dataset.

Visual Comparison (NeRF Synthetic Dataset)

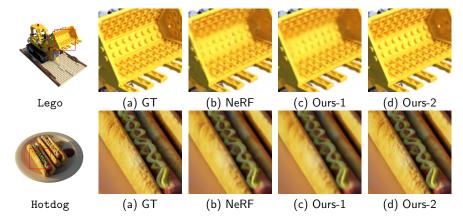


Figure: Ours vs. NeRF (Mildenhall et al., 2020). Ours-1 is trained sorely on pseudo data, Ours-2 on pseudo and real data. Much better quality with only 1/26 FLOPs. Please see our paper for more results.

Visual Comparison (Real-World Dataset)

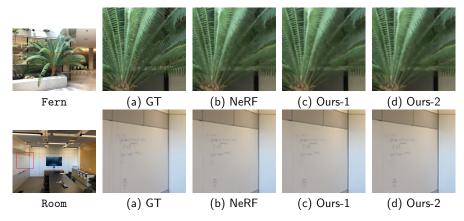


Figure: Ours vs. NeRF (Mildenhall et al., 2020). Ours-1 is trained sorely on pseudo data, Ours-2 on pseudo and real data. Comparable quality with only 1/26 FLOPs. Please see our paper for more results.

Conclusion

Conclusion

We present **R2L**, a new and novel **efficient NVS** method by **distilling a NeRF to NeLF**. Three major techniques are proposed to enable it:

- Network: We propose a much deeper ResMLP network to seek greater representative power – This is the *first attempt* that optimizes the NeRF speed from the network architecture level and the *first* time dense residuals are properly integrated into a NeRF network.
- Data: We propose to employ pretrained NeRF to synthesize abundant pseudo data. The model is later fintuned on the real data to further boost performance.
- Ray representation: We represent the ray with a simple concat scheme and propose to add noise during training to curb overfitting.

Empirically, to our knowledge, this is the *first NeLF* that runs round $30 \times$ faster than NeRF while still being significantly better.

GitHub Code

Thank you!

Code: https://github.com/snap-research/R2L

Real-Time Neural Light Field on Mobile Devices (CVPR 2023)

Junli Cao¹ Huan Wang² Pavlo Chemerys¹ Vladislav Shakhrai¹ Ju Hu¹ Yun Fu² Denys Makoviichuk¹ Sergey Tulyakov¹ Jian Ren¹

> ¹Snap Inc. ²Northeastern University Project: https://snap-research.github.io/MobileR2L

> > Talk @ZJUI, 05/30/2023, Tue

Motivation

Run R2L in real time on mobile devices. Problems:

- 800×800 input, 800×800 output? Too large, OOM!
- Slow!

Learn a Page from Super-Resolution (SR)

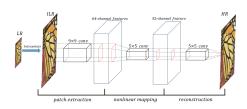


Figure 2: Sketch of the SRCNN architecture.

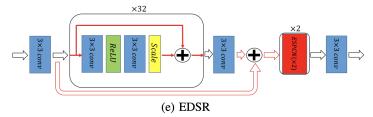


Figure: Illustration of SRCNN (ECCV'14) and EDSR (CVPRw'17). Src: (Yang et al., 2019)

Overview of MobileR2L

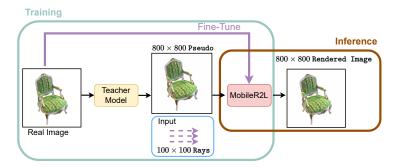


Figure: Training and Inference Pipeline. The training involves a teacher model to generate pseudo data, which is used to learn the MobileR2L. The teacher model, e.g., NeRF, is trained on real images. Once we have the teacher model, we use it to generate pseudo images, e.g., images with the resolution of 800×800 , in addition to down-scaled rays, e.g., rays with spatial size as 100×100 , that share the same origin with the pseudo images to train the MobileR2L. After that, we use the real data to fine-tune MobileR2L. For inference, we directly forward the rays into the pre-trained MobileR2L to render images.

ZJUI. 2023-05-30

The Proposed Architecture of MobileR2L

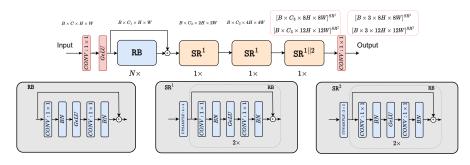


Figure: Overview of Network. The backbone includes residual blocks (RB) that is repeated 28 times (N=28). Following the backbone, there are two types of super-resolution (SR) modules. The first SR module (SR¹) has kernel size 4×4 in the Transpose CONV layer that doubles the input H,W to 2H,2W, whereas the second SR module (SR²) has kernel size 3×3 , tripling the spatial size to 3H,3W.

Experimental Results

Quantitative Comparison

Table: Quantitative Comparison on Synthetic 360° and Forward-facing. Our method obtains better results on the three metrics than NeRF for the two datasets. Compared with MoibleNeRF and SNeRG, we achieve better results on most of the metrics.

	Synthetic 360°			Forward-facing		
	PSNR↑	$SSIM \!\!\uparrow$	$LPIPS\!\!\downarrow$	$PSNR\!\!\uparrow$	$SSIM \!\!\uparrow$	$LPIPS\!\!\downarrow$
NeRF (Mildenhall et al., 2020)	31.01	0.947	0.081	26.50	0.811	0.250
NeRF-Pytorch (Yen-Chen, 2020)	30.92	0.991	0.045	26.26	0.965	0.153
SNeRG (Hedman et al., 2021)	30.38	0.950	0.050	25.63	0.818	0.183
MoibleNeRF (Chen et al., 2023)	30.90	0.947	0.062	25.91	0.825	0.183
MobileR2L (Ours)	31.34	0.993	0.051	26.15	0.966	0.187
Our Teacher	33.09	0.961	0.052	26.85	0.827	0.226

Visual Comparison

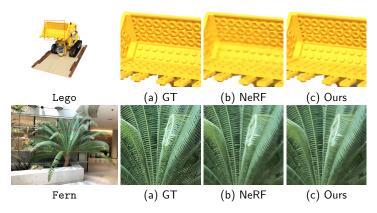


Figure: Visual comparison between our method and NeRF (Mildenhall et al., 2020) (trained via NeRF-Pytorch (Yen-Chen, 2020)) on the synthetic 360° Lego (size: $800 \times 800 \times 3$) and real-world forward-facing scene Fern (size: $1008 \times 756 \times 3$). Best viewed in color. Please refer to our webpage for more visual comparison results.

Zoom-in Comparison

Figure: Zoom-in comparisons. *Top row*: MobileNeRF (Chen et al., 2023). Results are obtained from the code and demo released by the authors. *Bottom row*: MobileR2L. Our approach renders high-quality images even for zoom-in views.

Storage (Representation Size) Comparison

Table: Analysis of Storage (MB) required for different rendering methods. Our method has a clear advantage over existing works with much less storage required, compared to MoibleNeRF (Chen et al., 2023) and SNeRG (Hedman et al., 2021).

	Synthetic 360°			Forward-facing		
	MoibleNeRF	SNeRG	Ours	MobileNeRF	SNeRG	Ours
Disk storage	125.8	86.8	8.3	201.5	337.3	8.3

Latency Comparison on Mobile Devices

Table: Analysis of Inference Speed. Latency (ms) is obtained on iPhone with iOS 16. Following MobileNeRF (Chen et al., 2023), we use the notation $\frac{M}{N}$ to indicate that M out of N scenes in the Forward-facing dataset that can not run on devices. Specifically, MobileNeRF cannot render Leaves and Orchids in Forward-facing.

	Synthetic :	360°	Forward-facing		
	MobileNeRF	Ours	MobileNeRF	Ours	
iPhone 13	17.54	26.21	$27.15\frac{2}{8}$	18.04	
iPhone 14	16.67	22.65	$20.98\frac{2}{8}$	16.48	

Another Remark: Why MobileR2L is Special?

It is the first to propose a 2D-3D hybrid architecture design for NVS, opening
the new doors to mix the two areas together – just image so many techniques
from the 2D image restoration area; many of them can be used here for
improved quality in NeRF/NeLF.

Conclusion and Discussions

Conclusion

- We present MobileR2L, the very first NeLF that can run in real time on mobile devices.
- MobileR2L is featured by a hybrid design of 3D light field network and 2D super-resolution architecture, enabling low-resolution (100×100) input with high-resolution (800×800) output.
- Empirically, MobileR2L achieves ~60fps real-time rendering on iPhone14, while saving over 24× storage than MobileNeRF (one of the 12 Award Candidate papers in CVPR 2023).

Limitations / Future Work

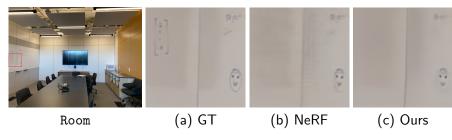


Figure: Visual comparison on the real-world scene Room. Both our model and NeRF fail to synthesize the whiteboard writings on the upper-left of the cutout patch.

- **Quality**. On some scenes, we still observe blurry rendered results, fine-grained details and textures are missing (see above).
- Training speed. R2L or MobileR2L training cost is $100 \sim 500 \times$ of NeRF (so essentially, R2L or MobileR2L is trading inference cost with training cost).
- Still need a teacher. How to learn light field directly remains a question.

Thanks! & Questions?

References

- Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. Mobilenerf: Exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. In CVPR. 2023.
- Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul Debevec. Baking neural radiance fields for real-time view synthesis. In ICCV, 2021.
- Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques, 1996.
- Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.
- Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf: Learning continuous signed distance functions for shape representation. In CVPR, 2019.
- Vincent Sitzmann, Semon Rezchikov, William T Freeman, Joshua B Tenenbaum, and Fredo Durand. Light field networks: Neural scene representations with single-evaluation rendering. In NeurIPS, 2021.
- Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue, and Qingmin Liao. Deep learning for single image super-resolution: A brief review. IEEE Transactions on Multimedia, 21(12):3106-3121, 2019.
- Lin Yen-Chen. Nerf-pytorch. https://github.com/yenchenlin/nerf-pytorch/ 2020. Cao et al. (Snap Inc. & Northeastern U.)